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Abstract: Phenylketonuria (PKU) is an autosomal recessive inborn error of metabolism where high
phenylalanine (Phe) concentrations cause irreversible intellectual disability that can be prevented
by newborn screening and early treatment. Evidence suggests that PKU subjects not adherent to
treatment could be at risk of insulin resistance (IR). We studied how Phe concentrations (PheCs) relate
to IR using machine learning (ML) and derived potential biomarkers. In our cross-sectional study, we
analyzed subjects with neonatal diagnoses of PKU, grouped as follows: 10 subjects who adhered to
treatment (G1); 14 subjects who suspended treatment (G2); and 24 control subjects (G3). We analyzed
plasma biochemical variables, as well as profiles of amino acids and acylcarnitines in dried blood
spots (DBSs). Higher PheCs and plasma insulin levels were observed in the G2 group compared to the
other groups. Additionally, a positive correlation between the PheCs and homeostatic measurement
assessments (HOMA-IRs) was found, as well as a negative correlation between the HOMA-Sensitivity
(%) and quantitative insulin sensitivity check index (QUICKI) scores. An ML model was then trained
to predict abnormal HOMA-IRs using the panel of metabolites measured from DBSs. Notably, ranking
the features’ importance placed PheCs as the second most important feature after BMI for predicting
abnormal HOMA-IRs. Our results indicate that low adherence to PKU treatment could affect insulin
signaling, decrease glucose utilization, and lead to IR.

Keywords: inborn error of metabolism; glucose metabolism; artificial intelligence; explanatory
machine learning

1. Introduction

Phenylketonuria (PKU) is a recessive autosomal disease characterized by the accumula-
tion of phenylalanine (Phe) in the plasma and a decrease in the tyrosine (Tyr) concentration.
PKU is mainly caused by mutations in chromosome 12q22-q24.1, which encodes for the
enzyme phenylalanine hydroxylase (PAH), which catalyzes the conversion of Phe into
Tyr [1]. It is known that high Phe concentrations (PheCs) in the blood are highly neu-
rotoxic, inducing irreversible central nervous system damage [2]. For this reason, PKU
should be diagnosed in the neonatal period. International guideline protocol treatment
has determined that adequate metabolic control is achieved when a subject maintains
a PheC of between 120 and 360 µmol/L [3–5]. Conventional treatment is crucial and
consists in suspending animal-origin food, such as meat, dairy products and derivatives,
fish and seafood, and other foods rich in Phe, such as legumes. Thus, it is necessary to
provide patients with a protein substitute without Phe (PS-PheFree)—a mixed amino acid
formula—containing enough protein to maintain growth and development within a normal
range. In Chile, the newborn screening program (NBS) for PKU began in 1992, presenting
an incidence of 1:18,816 NBs with PKU and 1: 10,116 NBs with hyperphenylalaninemia
(HPA) [6]. Since then, 280 PKU subjects have been diagnosed, of which 84% were classified
as having a classical PKU phenotype. In addition, three frequent variants were identified:
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c.1162G>A, c.442-?_509+?del, and IVS10-11G>A [7]. When the NBS program started, the
diet-therapeutic treatment based on PS-PheFree was subsidized by the government. The
subvention covered patients until they reached 18 years of age. However, since 2017, the
subvention has been extended for lifelong coverage. Therefore, for 9 years, there were
patients that, after reaching 18 years of age, had to start paying for the PS-PheFree treat-
ment, leading to some of them not continuing because of the cost of the treatment and
maintaining a vegan diet instead.

The adult PKU population has been increasing over the years, and the scientific ev-
idence highlights that, in adolescence and adulthood, adherence to treatment decreases,
affecting life quality [8,9]. At the same time, this poor adherence has been related to neuro-
logical consequences [10] and health complications similar to those observed for obesity,
hypertension, osteoporosis, and alterations in glucose metabolism [11–13]. In 2018, in a
multicenter cross-sectional study of 83 patients ranging from 4 to 52 years old, Couce et al.
analyzed the carbohydrate metabolism in PKU patients who had received a neonatal diag-
nosis. They reported that 26% of the PKU subjects had altered fasting insulin levels, with
HOMA-IR scores that were significantly higher than those of the control group [14]. Until
now, no biomarkers for insulin resistance in PKU have been proposed. Moreover, most
studies addressing PKU and glucose metabolism employ statistics such as mean compar-
isons and pairwise correlations, while biomarker investigation often requires sophisticated
multivariate or machine-learning-based approaches [15]. Indeed, machine learning (ML)
techniques have been helpful in identifying biomarkers for various human diseases [16,17].
In this study, we investigated whether subjects who suspended treatment increased their
cardiovascular risk, and whether this may be detected via plasma biomarkers. In this sense,
we evaluated how the suspension of conventional treatment affects insulin resistance, and
we applied ML techniques to propose new IR biomarkers in the PKU population.

2. Materials and Methods
2.1. Study Design

A cross-sectional study was conducted from August 2019 to January 2020. The Ethics
Committee of the Institute of Nutrition and Food Technology (INTA) of the University
of Chile approved the project in July 2019, and it was conducted in accordance with the
principles of the Declaration of Helsinki.

2.2. Participant Description

The INTA of the University of Chile serves as the national reference center for the diag-
nosis, treatment, and follow-up of PKU. For our adult PKU cohort, we invited 24 subjects
over 18 years of age to participate in the study, all of whom had received neonatal
PKU diagnoses.

We divided the PKU subjects into two groups:
Group 1 (G1): 10 PKU adults who had continued the conventional treatment (Phe-

restriction diet and PS-PheFree intake), with follow-up after they were 18 years old;
Group 2 (G2): 14 PKU adults with low adherence to the treatment, considering a poor

Phe-restricted diet, who had suspended the PS-PheFree treatment for more than one year;
Group 3 (G3): 24 control subjects without PKU, with similar characteristics to both

PKU groups in terms of age, sex, and body mass index (BMI).
All participants signed a written informed consent.
We excluded pregnant women, subjects with another metabolic disease, subjects with

late diagnoses of PKU and with moderate or profound intellectual and physical disability,
and those who refused to sign an informed consent.

We also excluded two control subjects who showed altered biochemical analyses
regarding their glucose metabolism. These individuals were replaced by two other subjects
who met the eligibility criteria.

Before the start of the study, each group was characterized with respect to its partic-
ipants’ adherence to treatment in the two preceding years. To be classified as adherent
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to treatment, we considered data corresponding to metabolic control (average phenylala-
nine concentration measured in dried blood spots), attendance at follow-up appointments,
and regular intake of protein substitutes without phenylalanine. We observed that G1
had an average of 9 samples with PheCs of 571 ± 227 umol/L. For G2, we observed a
corresponding 9 samples with average PheCs of 590 ± 240 umol/L, similar to G1. In
relation to the SP-PheFree intake, the median protein intake of this substitute for G1 was
0.84 gr/kg (IQR: 0.36–1.18), covering 66 ± 31% of the total protein intake. In the case of
G2, the median protein intake for PS-PheFree was 0.01 gr/kg (IQR: 0–0.51), covering an
average of 24 ± 31% of the total protein intake, which was one of the reasons why this
group was considered nonadherent to the treatment (their low PS-PheFree intake or its
definitive suspension).

2.3. Anthropometric Assessment

We measured subjects’ weight (kg) and height (m) with a Seca scale (0.005 kg accuracy)
and stadiometer (0.01 cm margin of error), respectively. Waist circumference (WC) was
measured at the middle point between the last rib and iliac crest and expressed in cm. Body
mass index (BMI) (kg/m2) was also calculated.

2.4. Biochemical Analysis

An amount of 15 mL of blood was collected from each patient after an 8–12-hour fast,
following the protocol indicated by the external certified laboratory where the analysis of
samples was performed. The parameters evaluated were the following: complete blood
count, glycemia, insulin, and lipid profile. In the case of insulin and glycemia, three fasting
samples were collected per patient at 15-minute intervals. The average value for each
variable was then calculated and utilized in the analysis.

Homeostasis Model Assessment (HOMA)

Each patient’s HOMA was calculated using the software provided by the University
of Oxford (accessed on 1 March 2020; https://www.dtu.ox.ac.uk/homacalculator/), which
considered the complete formula published by Matthews [18]. This method assesses β-cell
function (HOMA-β%) and insulin sensitivity (HOMA-S%). The reference value used for
the altered HOMA-IR was a cut-off of 2.6 [19,20]. Insulin resistance was also assessed using
the quantitative insulin sensitivity check index (QUICKI) (1/log10 basal insulin (uIU/mL)
+ log10 basal glucose (mg/dL)) [21].

2.5. Amino Acid and Acylcarnitine Determination by Tandem Mass Spectrometry (MSMS)

The MSMS analysis of amino acids and acylcarnitines was measured in a single
3.2 mm punch disc obtained from individual dried blood spots (DBSs). A single disc
was punched out from the DBS into a microplate well containing 100 µL of a working
solution (isotopically labelled metabolites in methanol 80%, oxalic acid 0.5 M, and hydrazine
0.06% v/v). The plate was shaken in an incubator/shaker (Wallac NCS incubator, Perkin-
Elmer; Wallac Oy, PO Box 10, 20101 Turku, Finland) at 45 ◦C for 45 min at a speed of
750 rpm. Then, 75 µL of the well content was transferred to another microplate. Analytical
measurements were performed in the multiple reaction monitoring mode (MRM). In order
to monitor the performance of our assays, quality control (QC from the Centers for Disease
Control and Prevention (CDC)) was performed on the samples in the same plate. The mass
spectrometric detection of each analyte was performed using a Micromass Quattro Micro
triple-quadrupole mass spectrometer (Waters Corporation, Milford, MA, USA) operating
in the positive electrospray ionization mode. The capillary voltage was 3.3 kV. A 40 V cone
voltage was used for all analytes. The source temperature was 120 ◦C and the desolvation
temperature was 400 ◦C. Each sample was injected by an autosampler (Waters 2777 C,
Waters Corporations, Manchester, UK) and eluted by an HPLC pump (Waters 1525 µ) at
a flow rate of 0.07 mL/min for 2 min. For quantification, the instrument was operated in

https://www.dtu.ox.ac.uk/homacalculator/
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MRM mode at the unit resolution. A 50 ms dwell time was used between the transitions. A
10 eV collision energy was used for the collision-induced dissociation.

2.6. Statistical Analysis

The distribution of variables was assessed using the Shapiro–Wilk test. Normally
distributed variables are presented as means with 95% confidence intervals (CIs), while
non-normally distributed variables are reported as medians with interquartile ranges
(IQRs). Differences among G1, G2, and G3 patients for normally distributed variables
were evaluated using ANOVA tests, followed by Student’s t-tests for group differentiation.
Non-normally distributed variables were examined using the Kruskal–Wallis test, followed
by the Mann–Whitney U test for group differentiation. As most variables exhibited a non-
normal distribution and considering the number of patients, a nonparametric analysis was
assumed. Spearman’s correlations were conducted to measure the dependence between
numerical variables. A p-value of 0.05 was considered significant. Statistical analysis was
carried out using JMP 16.2.0.

2.7. Machine Learning Model

We implemented a k-fold cross-validation approach to partition our dataset into
training and test sets. A 3-fold grouping was used to ensure sufficient training samples
per cohort, while intentionally avoiding oversampling to prevent model overfitting. Im-
portantly, we anticipated the presence of “leaker” features directly related to our target
variable, such as the HOMA-IR, fasting insulin, and QUICKI, and consequently masked
these variables in our prediction model. Of note, a “leaker” feature in machine learning
refers to data that unintentionally include information from the target variable, therefore
providing a misleadingly high performance during training and validation but leading to
poor results in the test set. We selected the XGBoost algorithm [22] to account for the small
sample size and address class imbalance issues. This algorithm combines bagging and
boosting techniques to generate a model, involving bagging a random subset of training
data and its features for multiple instances of the model, averaging the predictions, and
using a sequence of weak learners to correct the errors of the previous learner iteration. To
avoid assigning all the model weight to a single feature, we performed Ridge regularization
(L2), conducting a hyperparameter search across several XGBoost parameters, including
the alpha (L1 regularization), lambda (L2 regularization), learning rate, maximum depth
(lowered to avoid overfitting), and scale_pos_weight (accounting for unbalanced positive
samples). We constructed a range of 10k models from the hyperparameter sampling and
selected those with an AUC accuracy above 0.9 to extract the most informative features.
To obtain an agnostic weight assigned to the features, we used SHAP values, based on
the concept of Shapley values [23]. Finally, we ranked the informative features based on
their computed weights. Our code was implemented in Python (https://www.python.org/
accessed on 1 March 2020), plots were generated using Plotly (https://plotly.com/ accessed
on 1 March 2020), and hyperparameter fine-tuning, sampling, and the detection of the
Pareto front using the NSGAIISampler were performed using Optuna (https://optuna.org/
accessed on 1 March 2020).

2.8. Code Availability

All results pertaining to machine learning can be reproduced using the code avail-
able at https://github.com/DeepenData/Phenylketonuria_IR_and_Machine_Learning
accessed on 1 March 2020.

3. Results

A total of 24 adult patients with PKU were included in this analysis, and 42% of the
patients were female, ranging from 18 to 30 years old. All of them were diagnosed in the
neonatal period, and according to the diagnostic Phe, they were classified as classical PKU.
Fourteen (58%) had suspended the PS-PheFree treatment and discontinued follow-ups (the

https://www.python.org/
https://plotly.com/
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https://github.com/DeepenData/Phenylketonuria_IR_and_Machine_Learning
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G2 group). All PKU adults were compared with the control group (the G3 group), without
differences in age, sex, and BMI (Table 1).

Table 1. Demographic and anthropometric characterization.

G1 Group
(n = 10)

G2 Group
(n = 14)

G3 Group
(n = 24) p-Value

Age (years) 24 (19–27) 24 (18–26) 23 (19–26) NS **
Sex (F/M) 5:5 5:9 11:13 NS ***

Weight (kg) b 65 (58–94) 75 (59–81) 68 (61–83) NS **
Height (m) a 163 ± 9 (157–170) 163 ± 8 (158–168) 165 ± 9 (161–168) NS *

BMI (kg/m2) a 26 ± 5 (23–30) 28 ± 7 (24–32) 26 ± 5 (24–28) NS *
Waist circumference (cm) b 82 (76–97) 92 (78–103) 81 (75–91) NS **

G1: PKU subjects who continued treatment and PS-PheFree intake; G2: PKU subjects who suspended treatment
and PS-PheFree intake; G3: control group; BMI: body mass index; NS: not significant. a normal distribution: values
represented by the median ± SD and a 95% confidence interval (CI); b non-normal distribution: values represented
by the median and an interquartile range (IQR: Q1–Q3); * ANOVA test; ** Kruskal–Wallis test; *** Fisher’s test;
n = number of subjects.

Anthropometrically, the groups were compared in relation to the BMI, obtaining an
average for the complete group of 26.6 ± 5.4 kg/m2 (95% CI: 25.1–28.2 kg/m2), with
no differences between the groups. Nonetheless, G2 presented higher BMIs and waist
circumferences (Table 1).

In relation to the biochemical analysis, a significant difference in glycemia levels was
observed between G1 and G3 (Table 2). Concerning plasmatic insulin, G2 presented an
average concentration of 17.8 ± 13.2 µIU/mL, which was over the reference value indicated
by the certificated laboratory (≤16 µIU/mL), and a significant difference compared to
G1 (10.2 ± 7.8 µIU/mL) was observed (Table 2). Regarding the lipid profile, we did not
observe a significant difference between the groups (Table 2).

Table 2. Biochemical analysis.

G1 Group
(n = 10)

G2 Group
(n = 14)

G3 Group
(n = 24) p-Value

Glycemia (mg/dL) a 85.7 ± 5.5
(81.8–89.7)

90.7 ± 4.9
(87.8–93.4)

92.2 ± 8.5
(88.6–95.8) <0.05 ε

Insulin (µIU/mL) b 7.9
(4.1–15.9)

12.4
(10.6–19.4)

9.6
(7.1–14.7) <0.05 G

HOMA-IR b 1.0
(0.5–2.0)

1.6
(1.4–2.5)

1.3
(0.9–1.9) <0.05 G}

HOMA-β (%) b 112.2
(79.7 –61.7)

139.1
(117.0–166.0)

107.5
(90.3–127.5) <0.05 }

HOMA-S (%) a 119.5 ± 71.6
(68.3–170.7)

60 ± 28.6
(43.6–76.7)

82.8 ± 37.5
(66.9–98.7) <0.05 Gε

QUICKI a 0.36 ± 0.04
(0.33–0.39)

0.32 ± 0.02
(0.31–0.33)

0.34 ± 0.03
(0.33–0.35) <0.05 G

Total cholesterol (mg/dL) a 137.1 ± 27.6
(117.3–156.8)

139.6 ± 27.5
(123.7–155.5)

154.1 ± 31.1
(140.9–167.3) NS *

HDL cholesterol (mg/dL) a 50.8 ± 12.8
(41.5–59.9)

44.3 ± 8.8
(39.2–49.4)

49.9 ± 9.3
(45.9–53.9) NS *

LDL cholesterol (mg/dL) b 65.6
(48.7–82.4)

68.3
(62.2–83.8)

77
(60.2–99.4) NS **

Triglycerides (mg/dL) b 81.5
(54–115)

93.5
(60–164)

92.5
(79–122) NS **

G1: PKU subjects who continued treatment and PS-PheFree intake; G2: PKU subjects who suspended treatment
and PS-PheFree intake; G3: control group; BMI: body mass index; NS: not significant; a normal distribution: values
represented by the median and a 95% confidence interval (CI); b non-normal distribution: values represented by
the median and an interquartile range (Q1–Q3); * ANOVA test; ** Kruskal–Wallis test; G G1 and G2 significant
difference; ε G1 and G3 significant difference; } G2 and G3 significant difference; n = number of subjects.
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To evaluate the IR presence, we observed that the HOMA-IR and HOMA-β scores for
G2 presented higher proportions, with a significant difference compared to G1 and G3 in
the first index, and a significant difference with only G3 for the HOMA-β scores (p-value
of <0.05) (Table 2). After the variable distribution analysis, we observed a non-normal
distribution for HOMA-IRs represented in the data for the median and IQR values (Table 2).
Despite this, we observed that the average (±SD) values of this variable had evidently
higher values in G2 compared to the others. The following median values were obtained
for the HOMA-IRs from each group: G1: 1.3 ± 0.9 (CI 95%: 0.6–2.0); G2: 2.2 ± 1.6 (CI 95%:
1.3–3.1); and G3: 1.6 ± 0.9 (CI 95%: 1.2–2.0).

For the insulin secretion sensitivity (HOMA-S%), the best percentage was observed in
G1, with significant differences compared to G2 and G3 (p-value of <0.05), and for the analysis
of the QUICKI index, there was a significant difference between G1 and G2 (Table 2).

Thirty-three metabolites were analyzed in the amino acid and acylcarnitine profiles,
and we observed significant differences for four amino acids and four acylcarnitines
(Table S1). The PheCs were significantly different among the groups (p-value of <0.05),
with an important difference between G1 (406.4 ± 306.9 umol/L, CI 95%: 186.9–625.9) and
G2 (771.0 ± 306.2 umol/L, CI 95%: 594.3–947.8). There was no difference found for the
tyrosine concentrations, even in comparison with G3. Regarding the other amino acids,
we observed that the leucine concentrations were higher in G3 (110.25 ± 20.69 umol/L,
CI 95%: 101.93–118.57) and the glycine and methionine concentrations were higher in
G2 (258.47 ± 89.19 umol/L, CI 95%: 206.97–309.97 and 26.17 ± 12.72 umol/L, CI 95%:
18.81–33.51, respectively) (Table S1). For the acylcarnitine concentrations, we primarily
found long-chain acylcarnitine, and G3 presented the largest concentrations.

Positive correlations were observed between the PheCs and fasting plasmatic insulin
levels (p-value of 0.01; r = 0.51; CI 95%: 0.07–0.73), HOMA-IR index (p-value of 0.01;
r = 0.50; CI 95%: 0.08–0.73), and HOMA-β index (p-value of 0.02; r = 0.48; CI 95%: 0.03–0.71)
(Figure 1a,b). Negative correlations were found between the PheCs and HOMA-S% index
(p-value of 0.01; r = −0.51; CI 95%: −0.73, −0.08) (Figure 1c) and QUICKI (p-value of 0.01;
r = −0.50; CI 95%: −0.75, −0.11).
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Up to this point in the study, we have shown an association between blood levels
of Phe and insulin resistance (IR). Subsequently, we considered a panel of metabolites,
including amino acids and acylcarnitines, to investigate their potential as biomarkers of
IR in PKU using a machine learning (ML) approach. Subjects with HOMA-IR values
exceeding the cut-off of 2.6 were categorized as abnormal [19,20], and an ML model was
trained to detect them. We then determined the extent to which each metabolite (feature)
from the panel contributes to detecting abnormal HOMA-IRs, with high-contributing
features representing potential biomarkers of IR in PKU. Notably, because we had already
established an association between Phe and IR, we expected this analysis to confirm
such a relationship in terms of Phe’s high contribution to identifying patients with IR.
Importantly, small datasets such as ours may lead to variance in the model performance,
necessitating adequate regularization and an exploration of the attainable performance
range. In this regard, we generated multiple models, with each model trained using cross-
validation, bagging, and internal regularization, while computing the AUC on testing data
(details in the Section 2). Figure 2 shows the importance of Phe concentrations (PheCs)
for predicting abnormal HOMA-IRs as a function of the model performance (measured as
AUC), with each circle or square representing a model. As observed in Figure 2, despite the
variance in the model performance, the high contribution of the PheCs was predominantly
consistent across different models, with a tendency to decrease at high AUCs. These results
confirm the association between Phe levels and IR. Furthermore, we identified the models
comprising the Pareto front between the Phe importance and AUC (red squares in Figure 2;
details in the Section 2), thus ensuring coverage of the entire model variance. We then
defined a set of high-performing models, consisting of those with an AUC greater than
0.9 (shaded rectangle in Figure 2). This set of models encodes a robust generalization of the
characteristic patterns of IR and was used for further feature importance analysis.
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instantiations were executed to explore the relationship between the importance of the Phe con-
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value concerning the occurrence of abnormal HOMA-IRs, while performance is the area under the
curve (AUC) of the receiver operating characteristic (ROC) curve computed on testing data. Squares:
Models belonging to the Pareto front. These models have values that other models cannot improve.
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Subsequently, we obtained the ranking of the feature importance for each high-
performing model. Figure 3 displays all the obtained rankings; each line corresponds
to a model, and features are sorted by the average importance across models. On average,
BMI is the most important feature for predicting an abnormal HOMA-IR score, with PheCs
in second place (Figure 3). The predominance of BMI as the top-ranking feature indicates
that predictions heavily rely on this variable to determine whether or not a patient’s state
will be labeled as an abnormal HOMA-IR and prioritize using Phe as the second reliable
variable to combine with the BMI. Overall, these results suggest that the BMI and PheCs
are crucial for identifying patients with IR. Additionally, ornithine was in third place, being
a strong candidate for an IR biomarker in PKU, along with free carnitine, which was in
fourth place (the complete ranking of the feature importance can be found in Figure S1).
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 Figure 3. Consensus ranking of feature importance for predicting abnormal HOMA-IRs. This parallel-
coordinates plot illustrates the consensus ranking of the feature importance for predicting abnormal
HOMA-IRs, with each axis representing a given feature (metabolite) scaled to the range in which this
was used. The consensus feature importance was determined by averaging feature rankings across
all models with an AUC (area under curve) greater than 0.9. The BMI (body mass index) is identified
as the most important feature for predicting an abnormal HOMA-IR, followed by the concentration
of phenylalanine. Additionally, several amino acids and acylcarnitines significantly contribute
to predicting an abnormal HOMA-IR. We display only the first 15 features, as less-informative
features are not used. It should be noted that there are several “paths” that a model can utilize to
achieve correct classification, and these paths may focus on different features for doing so. Therefore,
consensus ranking represents the most frequently used feature for classification. PheC: concentration
of phenylalanine; protein avg. (g): grams per day of total protein.

4. Discussion

Phenylketonuria is one of the most prevalent inborn errors of metabolism; however,
the prevalence is not exceedingly high. Worldwide, it is 1:10,000 newborns, and in Chile,
the PKU prevalence is 1:18,816 newborns [6]. Due to its relatively low prevalence, it is chal-
lenging to include more patients in this type of study. In this analysis, we considered 30% of
the adult cohort from this period. In several PKU cohorts, it has been observed that as age
increases, adherence to treatment and follow-up lowers [8,9,24,25], and for this reason, the
evidence suggests implementing the transition starting at 12 years of age, mainly to prepare
subjects to transition from the pediatric stage to the adult stage [3,26]. Further, with the size
of the adult PKU population increasing, more cardiometabolic disorders have appeared,
which is similar to the general population [27,28]. One of the risk factors involved for the
general population is the presence of obesity, which also affects PKU subjects. In the last
Chilean PKU cohort update, 43% of subjects were overweight or obese, and the adult group
had the major prevalence (43% over 18 years old) [9]. Rodrigues et al. [29], in their system-
atic review and meta-analysis, observed that there was no relationship between Phe dietary
restriction in PKU subjects and BMI; this association appeared when considering only classi-
cal PKU subjects, and especially when the PheCs were elevated [29]. When evaluating these
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24 PKU subjects, both those who were adherent and those who were not adherent to treat-
ment, we observed in 54% an excess of weight (23% were obese). For reasons such as this,
the guidelines suggest that PKU patients should undergo periodic follow-up with a multi-
disciplinary team to prevent the appearance of other risk factors [5,29]. Burton et al. [12]
analyzed the comorbidity prevalence in PKU subjects, observing a high prevalence of renal
failure (with or without hypertension), being overweight, and other conditions, and to a
lesser degree, diseases such as osteoporosis [12]. Furthermore, Trefz et al. [13] evaluated
the presence of comorbidities in a German adult cohort with PKU, considering subjects
with early and late PKU diagnoses. Here, when they separated the groups considering
the time of diagnosis, they observed predominant conditions in early PKU that preceded
the comorbidities described in late PKU. For this reason, they postulated that the elevated
PheCs caused by nonadherence or abandonment of treatment, which were similar to the
concentrations observed in the late PKU subjects, were triggering the emergence of signs,
symptoms, and comorbidities that may have stimulated the development of cardiovascular
disease [13]. When analyzing the biochemical statuses of the PKU subjects, we did not
observe a significant difference between the groups concerning the lipid profile. However,
we observed an alteration in the glucose metabolism. Without an alteration in fasting
plasmatic glucose, the plasmatic insulin was higher in the group that had suspended
conventional treatment. As such, we calculated the updated HOMA indices provided by
Oxford University (https://www.dtu.ox.ac.uk/homacalculator/accessed on 1 March 2020)
in 2002, complementing the HOMA-IR score with the function of pancreatic β-cells for
insulin secretion (HOMA-β%) and the sensitivity to the secreted insulin (HOMA-S%). This
update accounts for variations in hepatic and peripheral resistance. While the HOMA-IR
is commonly used, we also calculated the other indices and complemented the results by
calculating the QUICKI index, observing the same tendencies. The most affected group
was G2, and these results suggested that, to maintain glucose stability, the functionality
of the pancreatic β-cells in these subjects was increased, but their sensitivity to secreted
insulin was low. In 1980, Stewart et al. described that chronic hyperphenylalaninemia
could indicate a pancreas subsensitivity in response to insulin after a high load of Phe. This
study was carried out on PKU subjects with late diagnoses who had irreversible intellectual
disability caused by high PheC exposure. Their conclusion was as follows: “After an acute
high load of Phe in the PKU patients exists an absence of an increased secretion of insulin
which suggests that a chronic hyperphenylalaninemia attenuates the insulin response” [30].
In 2015, Kanufre et al. [31] observed a positive correlation between plasmatic insulin and
the HOMA-IR index in overweight PKU patients ranging from 4 to 15 years old. In 2018,
Couce et al., in a multicenter study, analyzed the glucose metabolism of 83 PKU subjects,
and they reported plasmatic insulin levels and HOMA-IR scores that were greater than
those of the control group in 26% of the subjects [14].

It is known that the secreted insulin by pancreatic β-cells is regulated by glucose
concentrations, encouraging nutrient absorption. The insulin signaling cascade results
from the binding of this enzyme to its IRα receptor, which activates the tyrosine kinase
activity of the receptor β subunit (IRβ), causing the autophosphorylation of this tyrosine
domain kinase and triggering the signaling cascade to promote glucose uptake via GLUT-
4 [32]. It has been described that any failure in any of these cascade steps can lead to a
defect in glucose uptake, favoring the development of diabetes mellitus 2 (T2D) [32]. It
is known that some metabolites, such as fatty acids, can alter this signaling pathway at
different stages of the cascade. Likewise, some branched and aromatic amino acids are
associated with IR, and high concentrations have been observed in subjects with T2D.
However, it is not yet clear how they are involved. Zhou et al. [33] recently suggested
the role that the PheC could play, trying to elucidate whether its increase is a cause or
consequence of T2D. In the first stage of their work, an animal model (C57BL/6j wild mice)
was given a feed chow with a higher Phe content for 12 weeks, increasing the amount
of PheCs to 140 µmol/L. There was no difference in caloric intake, but the following
consequences were observed: increased fasting glucose levels, impaired glucose tolerance
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tests, higher insulin concentrations, altered HOMA-IR scores, and decreased tolerances
to insulin. These consequences, which resulted after 6 months on this diet, led to the
development of IR and T2D. In the second stage, a cell culture model (murine adipocytes
and rat skeletal myoblasts) was supplemented with methyl-phenylalanine (Met-Phe),
increasing six-fold the intracellular Phe content. It was observed that Met-Phe prevented
the insulin-stimulated glucose uptake, suggesting that the PheC attenuates insulin signaling
intracellularly, confirming its role in decreasing tyrosine domain phosphorylation in the
IR receptor (the receptor of the insulin 1 (IRS1) substrate, among other insulin signaling
indicators). In addition, it was observed that Met-Phe supplementation prevented the
enrichment of GLUT-4 in the adipocyte membrane [33]. Given these results, we therefore
considered that the high concentrations of Phe in the adult subjects who had not adhered
to treatment could not only cause neurological and behavioral alterations in this age
group, but could also affect the insulin signaling pathway, altering glucose metabolism.
These results and the evidence found in the literature led us to hypothesize that subjects
with PKU could be more susceptible to the development of IR due to their condition.
Through machine learning, several models were created and tasked to identify subjects
with altered HOMA-IR scores, considering the established cut-off point of 2.6 [19,20], and
to analyze how other variables contributed to this classification [20,34,35]. We selected
those models that presented an AUC greater than 0.9, which were considered the most
accurate. From these, we determined that the variables that contributed more to identifying
a subject with altered HOMA-IR scores were the BMI (first) and PheC (second) The positive
association between BMI and the development of insulin resistance has been very well
described in the literature, supporting our approach [36,37]. Then, focusing on the PheCs,
we observed that despite the high contribution of the BMI, they appeared to be a heavy
contributor. In the third and fourth positions of importance were ornithine and free
carnitine, respectively. Ornithine may serve as a biomarker for IR in PKU, as it has been
described that it can activate membrane depolarization in pancreatic islet β-cells, leading
to increased cytosolic Ca2+ levels and the subsequent stimulation of insulin secretion [38].
Thus, higher levels of ornithine may compensate for insulin resistance. Moreover, abnormal
carnitine regulation has been associated with mitochondrial dysfunction and IR [39], and
carnitine supplementation has been proposed as a strategy for managing insulin resistance
and type 2 diabetes [40]. Consequently, carnitine may also be considered as a potential
biomarker. The application of machine learning in investigating PKU and IR has not been
addressed in previous studies, making this work a pioneer in analyzing this association by
considering not only the Phe levels but also a set of metabolic and anthropometric variables,
and confirming the importance of Phe over other amino acids. These results open a new
line of research that will allow us to determine whether the PheC has a deleterious effect
on glucose metabolism, and whether this influence in the development of IR could finally
lead to type 2 diabetes.

5. Conclusions

Machine learning models are primarily employed to predict the occurrence of diseases
or conditions based on measurements, such as metabolite abundance or biochemical tests.
However, along with prediction, machine learning models can provide explanations in
terms of feature importance for making predictions, which helps gain insight into how
features relate to the target variable, which, in our case, was the abnormal HOMA-IR. We
showed that employing an explanatory-based strategy can reveal latent issues underlying
the condition. Specifically, low adherence to treatment in PKU subjects, allowing for high
Phe concentrations maintained over time, can not only cause neurological alterations
in executive function and behavior, as already described in the literature, but can also
affect insulin regulation, decreasing glucose utilization, and facilitating the development
of insulin resistance. Machine learning techniques can help PKU treatment, allowing for
a multidimensional approach comprising several aspects of the condition, such as those
already mentioned. Moreover, our approach can improve the understanding of the complex
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relationships between measurements and health outcomes. As a result, it may facilitate
better decision making by clinicians and researchers.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/metabo13060677/s1, Table S1: Acylcarnitine and
Amino Acid Profile comparison. Figure S1. Complete ranking of feature importance.
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